Список предметов
Right prism
23 / 24

Right prism


Прямая призма - призма, у которой ребра находятся под приямым углом по отношению к ее основаниям

right prism is a type of prism in which the lateral edges are perpendicular to the base. This means that the sides
of the prism stand upright, forming right angles with the base.

A right prism can have any geometric shape as its base, whether it be a triangle, square, pentagon, or any other polygon.

regular right prism is a special type of right prism where the bases are regular polygons. This means that all sides
and angles of the base are equal.

For example, a regular right quadrangular prism is a type of parallelepiped. A parallelepiped is a three-dimensional
figure whose faces are parallelograms. A special case of a parallelepiped is a cube, which is a regular prism where
all faces are equal squares.

Properties of a Right Prism

  1. Equal Bases: The bases of a right prism are congruent, meaning they are identical in shape and size.
  2. Rectangular Lateral Faces: Each of the lateral faces of a right prism is a rectangle.
  3. Parallel and Equal Lateral Edges: The lateral edges are parallel to each other and are of equal length.
  4. Equal Rectangular Lateral Faces in Regular Prisms: In a regular right prism, the lateral faces are equal rectangles.
  5. Diagonal Plane Intersection: When a right prism is intersected by a diagonal plane, the resulting section is a parallelogram.
  6. Perpendicular Section: A section that is perpendicular to the lateral edges of the prism is also perpendicular to all lateral faces.
  7. Linear Angles of Dihedral Angles: The angles of the perpendicular section are the linear angles of the dihedral angles at the corresponding lateral edges.
  8. Height and Edge Length: The length of the lateral edge of a right prism is equal to its height.

These properties make right prisms a fundamental concept in geometry, with applications in various fields such as architecture, engineering, and mathematics.

Right prism formulas

Прямая многоугольная призма с обозначенными ребром, которое является ее высотой и стороной основания правильного многоугольника
Where:
Ss - lateral surface area of ​​a right prism
Sb - base area
V - volume of a right prism
Vn - volume of a right prism with a regular polygon at the base
Ssn - lateral surface area of ​​a right prism with a regular polygon at the base
P - base perimeter
h - height of the prism, also known as the length of the lateral edge of a right prism
n - for a right prism with a regular polygon at the base, the number of sides of the regular polygon
a - for a right prism with a regular polygon at the base - the length of the side of the regular polygon

Формулы для нахождения объема и площади боковой поверхности прямой призмы и прямой правильной призмы с многоугольником в основании
Содержание главы:


 Prism. Parallelepiped. Cube. Solving problems | Описание курса | Regular quadrangular prism