Список предметов
Diagonal of the axial section of the cylinder
73 / 73

Problem. The axial section of the cylinder is a square whose diagonal is 4 cm. Find the volume of the cylinder

Осевое сечение цилиндра - квадрат с диагональю

To solve this problem, let's break it down step by step:

  1. Find the side length of the square cross-section:
    • The diagonal of the square is given as 4 cm.
    • For a square, the relationship between the side length a and the diagonal d is given by the formula:
  2. Соотношние стороны и диагонали квадрата
    • Solving for a:
    a = d / √2= 4 / √2 = 2√2 cm
  3. Determine the radius of the cylinder:

    • The side length of the square is equal to the diameter of the cylinder's base.
    • Therefore, the radius rr of the cylinder is:
  4. r = a / 2 = 2√2 / 2 = √2 cm
  5. Find the height of the cylinder:

    • The height hh of the cylinder is equal to the side length of the square cross-section:
  6. h = 2√2 cm
  7. Calculate the volume of the cylinder:

    • The volume V of a cylinder is given by the formula:
  8. Объем цилиндра равен произведению пи на квадрат его радиуса и на его высоту
    • Substituting the values:

V = π (√2)2(2√2) = π (2) (2√2) = 4√2π cm3

So, the volume of the cylinder is 4√2π cm3

Problem

Find the total surface area of a cylinder if the diagonal of its axial section, which is 8 cm, forms an angle of 30 degrees
with the generator of the cylinder.

Цилиндр с осевым сечением в виде параллелограмма с указанным углом диагонали

Solution

The cylinder has an axial section in the form of a parallelogram with the given diagonal angle.

Since AC = 8 cm and the angle ACD = 30°, then:

CD= AC⋅cos⁡(30°)

Explanation: Triangle ACD is a right triangle. Therefore, CD/AC=cos⁡(∠ACD) by the property of trigonometric functions in a right triangle.
The value of cos⁡(30°) can be found from the table of trigonometric function values.

CD = 8⋅√3/2 = 4√3

Similarly,

AD=AC⋅sin⁡(30°)
AD = 8⋅1/2 = 4

From this, the radius of the base of the cylinder is:

4 / 2 = 2 cm

The area of the base of the cylinder is:

S1 = πR2 = 4π

The lateral surface area of the cylinder is the area of its development - the product of the circumference of the base and the height of the cylinder.
That is:

S2 = 2πRh = 2π * 2 * 4√3  = 16π√3

The total surface area of the cylinder is:

S1+S2=4π+16π√3

Answer: 4π+16π√3

0  


 Cylinder and its sections (square and inscribed cube) | Описание курса