Примітка. В цьому розділі формулювання і доведення теореми синусів. В уроках глави наведені завдання з геометрії з рішеннями на цю ж тему.
Див. також Теорема косинусів.
Теорема синусів
Теорема синусів встановлює залежність між величиною кутів трикутника і протилежних йому сторін.
Формулювання теореми синусів
Сторони трикутника пропорційні синусам протилежних кутів
або,
де
R - радіус описаного навколо трикутника кола
a, b, c - сторони трикутника
α, β, γ - величини протилежних цим сторонам кутів
Доказ теореми синусів
Доказ теореми синусів відбувається
за допомогою додаткових побудов.
Побудуємо довільний трикутник, вписаний в коло. Позначимо його як ABC.
Додатково побудуємо діаметр окружності, в яку вписаний довільний трикутник, але так, щоб він проходив через один з його кутів. Діаметр дорівнює подвійному радіусу кола (2R).
Візьмемо до уваги, що однією з властивостей прямокутного трикутника, вписаного в коло є те, що його гіпотенуза, є діаметром кола, в яке він вписаний.
Позначимо діаметр для описаного кола як BD.
Утворений трикутник BCD є прямокутним, оскільки його гіпотенуза лежить на діаметрі описаного кола (властивість кутів, вписаних в коло).
Таким чином, додатково побудований трикутник, у якого одна загальна сторона з побудованим раніше довільним трикутником, а гіпотенуза збігається з діаметром окружності - є прямокутним. Тобто трикутник DBC - прямокутний.
Для доказу всієї теореми, оскільки розміри трикутника ABC обрані довільним чином,
досить довести, що співвідношення однієї довільної сторони до протилежного їй кута одно 2R.
Нехай це буде
2R = a / sin α, тобто якщо взяти за кресленням
2R = BC / sin A.
Оскільки,
кути, вписані в коло, що спираються на одну й ту ж дугу, рівні, то кут CDB або дорівнює куту CAB (якщо точки A і D лежать по одну сторону від прямої BC), або дорівнює π - CAB (в іншому випадку).
Звернемося до властивостей тригонометричних функцій. Оскільки
sin (π - α) = sin α, то зазначені варіанти побудови трикутника все одно призведуть до одного результату.
Обчислимо значення
2R = a / sin α, за кресленням 2R = BC / sin A. Для цього замінимо sin A на співвідношення відповідних сторін прямокутного трикутника.
2R = BC / sin A
2R = BC / ( BC / DB )
2R = DB
А, оскільки, DB будувався як діаметр кола, то рівність виконується.
Повторивши той же міркування для двох інших сторін трикутника, отримуємо:
Теорема синусів доведена.