Список предметов
Теорема косинусов. Пример решения задачи
100 / 191

Теорема косинусов формулируется следующим образом: квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведения этих сторон на косинус угла между ними.

Теорема косинусов утверждает, что квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторонна косинус угла между ними.

Задача

Одна из сторон треугольника больше другой на 8 сантиметров, а угол между ними равен 120 градусам. Найдите периметр треугольника, если длин третьей стороны равна 28 см.

Решение.

Обозначим одну из сторон треугольника как x, тогда величина другой равна x+8 см.

Исходя из теоремы косинусов, получим:
282 = x2 + (x+8)2-2x(x+8)cos120o
784 = x2 + x2 +16x + 64 - 2x(x+8)(-0,5)
784 = 2x2+16x + 64 + x(x+8)
720 = 3x2 + 16x + 8x
3x2 + 24x +720 = 0
D=9216
x1=((-24)+96)/6=12 (второй корень является отрицательным числом и не имеет смысла в рамках решения задачи)

Таким образом, периметр треугольника P=12+(12+8)+28 = 60 см.

Ответ: 60 см

Задача   

В треугольнике АВС сторона АС равна 7√3 см, сторона ВС равна 1 см. Угол С равен 150 градусам. Найти длину стороны АВ.

Решение.
Применим теорему косинусов и соответствующую формулу (см.выше)
AB2  = (7√3)2 + 12  - 2 (7√3) cos 150º

Значение косинуса 150 градусов найдем по таблице значений тригонометрических функций.
AB2 = 147 + 1 - 14√3 (-√3/2) 
AB2 = 148 + 21 = 169
AB = 13

Ответ: 13 см

0  


 Теорема косинусов и ее доказательство | Описание курса | Тангенс и его свойства