Рассмотрим изменения функции (отрезка ОС) при движении подвижного радиуса по окружности и увеличении угла. Пределы изменения косинуса угла будем определять по квадрантам.
В I квадранте (ОС):
при α = 0° cos α = 1;
при 0° < α < 90° 1 > cos α > 0;
при α = 90° cos α = 0.
Во II квадранте (ОС1):
при α = 90° cos α = 0;
при 90° < α < 180° 0 > cos α > -1;
при α = 180° cos α = -1.
За пройденный подвижным радиусом (ОВ) первый полукруг изменился от 1 до -1, наибольшее и наименьшее его значения совпадают с длиной радиуса на положительной и отрицательной полуосях х.
Второй полукруг движения подвижного радиуса можно рассматривать как положительное направление (при движении ОВ дальше против часовой стрелки) и как отрицательное направление (если ОВ вращать по часовой стрелке). Рассмотрим только положительное направление.
В III квадранте (ОС2):
при α = 180° cos α = -1;
при 180° < α < 270° -1 < cos α < 0;
при α = 270° cos α = 0;
В IV квадранте (ОС3):
при α = 270° cos α = 0;
при 270° < α < 360° 0 < cos α < 1;
при α = 360° cos α = 1.
За пройденный второй полукруг изменился от -1 до 1, а наименьшее и наибольшее его значения совпадают с длиной радиуса на отрицательной и положительной полуоси х.
За весь оборот подвижного радиуса ОВ, от совпадения с ОА до второго их совпадения, угол численно изменился от 0° до 360°, а численное значение косинуса угла изменялось в предела от 1 до -1.
Численное значение синуса и косинуса угла зависит только от градусной меры угла и не зависит от параметров прямоугольного треугольника и его расположения на плоскости. Функции синуса и косинуса угла в численном значении не превышают 1.
Вычислить значения синуса и косинуса любого острого угла прямоугольного треугольника всегда можно, если известны длины его катетов и гипотенузы, но чаще вычисления не производят, а считывают значения функций по таблицам логарифмов тригонометрических функций в зависимости от величины острого угла.