|
Примечание. Это часть курса обучения с задачами по геометрии (раздел равнобокая трапеция). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ или sqrt(), при чем в скобках указано подкоренное выражение.
Задача.
В равнобедренной трапеции ABCD меньшее основание BC = 5 см, угол ABC = 135 градусов, высота трапеции равна 3 см. Найдите большее основание.
Решение.
Опустим из вершины B на основание AD высоту BE.
В результате угол ABC равен сумме градусных мер углов ABE и EBC. Поскольку основания трапеции параллельны, то угол EBC равен 90 градусов. Откуда угол ABE = 135 - 90 = 45 градусов.
Поскольку BE - высота, то треугольник ABE - прямоугольный. Зная угол ABE, определим, что угол EAB равен 180º - 90º - 45º = 45º . Откуда следует, что треугольник ABE - равнобедренный, то есть AE = BE = 3 см.
Поскольку трапеция ABCD - равнобокая, то большее основание равно 5 + 3 + 3 = 11 см.
Ответ: большее основание равнобокой трапеции равно 11 см.
Задача
Найти среднюю линию равнобокой трапеции, диагональ которой является биссектрисой острого угла, боковая сторона 5, а одно из оснований в 2 раза больше другого.
Решение.
Поскольку основания трапеции параллельны, то угол ADB равен углу DBC, как внутренние накрест лежащие углы. Так как по условию диагональ является биссектрисой, то углы ADB и BDC равны. Откуда следует, что углы CBD и CDB равны.
Из сказанного выше следует, что треугольник BCD - равнобедренный. Таким образом, поскольку боковая сторона равна 5 см, то основание BC также равно 5 см.
Согласно условию, второе основание больше в два раза, то есть равно 10 см.
Средняя линия трапеции равна полусумме оснований. Откуда средняя линия трапеции равна ( 5 + 10 ) / 2 = 7,5 см
Ответ: Средняя линия трапеции равна 7,5 см.
Задача
Две окружности с радиусами a и b касаются внешним образом. К ним проведены общие внешние касательные. Найти площадь четырехугольника, вершинами которого служат точки касания.
Решение.
Как видно из рисунка, четырехугольник, образованный касательными, является равнобокой (равнобедренной) трапецией.
Площадь трапеции найдем по формуле (1):
Длины верхнего и нижнего оснований равны двойным радиусам соответствующих окружностей, а высота - сумме радиусов.
Откуда:
S = ( 2a + 2b ) ( a + b ) / 2
S = ( a + b )2
Ответ: S = (a + b)2 .
Равнобокая трапеция |
Описание курса
| Трапеция, описанная вокруг окружности
|