Список предметов
Вписанная в треугольник окружность
64 / 191

Свойства вписанной окружности

  • В каждый треугольник можно вписать окружность, при этом только одну
  • Центр вписанной окружности называется инцентром, он равноудалён от всех сторон
  • Центр вписанной окружности является точкой пересечения биссектрис треугольника

Радиус вписанной окружности

Радиус вписанной в произвольный треугольник окружности равен отношению его площади к полупериметру.
Формулы радиуса вписанной окружности:

Радиус вписанной окружности

Центр вписанной в треугольник окружности - это точка пересечения биссектрис его улов. При этом стоит заметить, что для равнобедренного треугольника - биссектриса угла напротив основания - является одновременно и высотой.

0  


 Окружность, описанная вокруг треугольника (часть 2) | Описание курса | Четырехугольник