Цилиндр
172 / 181
Примечание. Это часть урока с задачами по геометрии (раздел стереометрия). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение.

Задача

Диагональ осевого сечения цилиндра равна 12 см и образует с плоскостью нижнего основания угол 45 градусов. Найти обьём цилиндра.

Решение.
Поскольку основание осевого сечения образует с высотой цилиндра, принадлежащей сечению, прямой угол, то треугольник, который образован диагональю осевого сечения, высотой цилиндра и его диаметром - прямоугольный.

Исходя из этого, угол между диагональю и высотой также равен 45 градусов ( 180 - 90 - 45 ).

Таким образом, треугольник является равнобедренным, а, следовательно, высота цилиндра равна его диаметру. Применив теорему Пифагора, найдем их.

d2 + d2 = 122

2d2 = 144
d2 = 72

Теперь применим формулу объема цилиндра V = пd2 / 4 h

V = 72п / 4 * √72
V = 18п * √72 

Ответ: 18п√72 

Задача

В цилиндр вписана призма. Основанием призмы служит прямоугольный треугольник, катет которого равен 2а, а прилежащий угол равен 60 градусам. Диагональ большей боковой грани призмы составляет с плоскостью ее основания угол в 45 градусов. Найдите объем цилиндра.

Решение.
Объем цилиндра найдем по формуле:

V = пR2h
где:
R - радиус основания прямого цилиндра, 
h - высота.

Найдем основание цилиндра. 1-й способ.
Основание цилиндра одновременно является окружностью, описанной вокруг прямоугольного треугольника, являющегося основанием призмы. Радиус окружности, описанной вокруг треугольника найдем по формуле:

R = a / 2 sin α
где:
a - сторона треугольника
α - угол, противолежащий стороне а.

Противолежащий угол найдем следующим образом. Поскольку треугольник прямоугольный, то противолежащий катету угол будет равен 180-90-60 = 30 градусов. Таким образом, радиус описанной окружности (он же радиус цилиндра) равен:

R = 2a / 2 sin 30 = 2a

Найдем основание цилиндра. 2-й способ
У прямоугольного треугольника гипотенуза одновременно является диаметром описанной окружности. Половина гипотенузы будет равна ее радиусу.
Таким образом найдем гипотенузу для прямоугольного треугольника, зная угол и его катет через тригонометрическую функцию:
2R = 2a / cos 60 = 2a / 0.5 = 4a
R = 2a

Найдем высоту цилиндра.
Диаметр описанной окружности образует с диагональю призмы прямоугольный треугольник, один катет которого является диаметром описанной окружности, второй - высотой цилиндра и призмы, а гипотенуза является диагональю большей стороны призмы и одновременно цилиндра.

Поскольку угол диагонали с основанием составляет 45 градусов, то второй угол равен 180 - 45 - 90 = 45 градусов.
Исходя из того, что прямоугольный треугольник равнобедренный, то высота цилиндра и призмы равна диаметру окружности. Таким образом:

V = пR2h
V = п*4a2*4a
V = п16a3.

Ответ: п16a3.

Задача

В цилиндр вписана правильная шестиугольная призма. Найти угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.

В циліндр вписана правильна шестикутна призма. Знайти кут між діагоналлю її бічної грані і віссю циліндра, якщо радіус основи дорівнює висоті циліндра.


Решение. Рiшення.

Если радиус основания равен высоте цилиндра, то каждая боковая грань вписанной призмы – квадрат. Диагональ грани образует с осью цилиндра, как и с боковым ребром, одинаковый угол 45°, так как ось цилиндра и боковые ребра вписанной призмы параллельны.

Якщо радіус основи дорівнює висоті циліндра, то кожна бічна грань вписаної призми - квадрат. Діагональ грані утворює з віссю циліндра, як і з бічним ребром, однаковий кут 45°, так як вісь циліндра і бічні ребра вписаною призми паралельні.

0  


 Цилиндр | Описание курса | Цилиндр и его сечения 
   

Обсудить на форуме
Записаться на курсы
Обратиться к консультанту
Пройти тест
Полный список курсов обучения
Бесплатные видеоуроки
Нужна информация!




Нажмите, чтобы рекомендовать эту страницу другим:
Рейтинг@Mail.ru Яндекс.Метрика