Примечание. Это часть урока с задачами по геометрии (раздел стереометрия). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение.
Задача.
Найдите площадь полной поверхности цилиндра, если диагональ его осевого сечения, равная 8см, составляет с образующей цилиндра угол величиной 30 градусов.
Решение.
Поскольку AC = 8 см, а угол ACD = 30°, то
CD = AC cos 30°
Пояснение. Треугольник ACD - прямоугольный. Соответственно, CD / AC = cos ∠ACD по свойству тригонометрических функций в прямоугольном треугольнике. Значение cos 30 найдем из таблицы значений тригонометрических функций.
CD = 8 * √3/2 = 4√3
Аналогично,
AD = AC sin 30°
AD = 8 * 1/2 = 4
Откуда радиус основания цилиндра равен 4/2 = 2 см
Площадь основания цилиндра, соответственно, равна
S1 = πR2 = 4π
Площадь боковой поверхности цилиндра равна площади его развертки - произведению длины окружности основания и высоты цилиндра. То есть:
S2 = 2πRh = 2π * 2 * 4√3
= 16π√3
Общая площадь поверхности цилиндра равна:
S1 +
S2
= 4π +
16π√3
Ответ:
4π +
16π√3
Цилиндр и его сечения (квадрат и вписанный куб) |
Описание курса
| Площадь поверхности цилиндра
|