Список предметов
Объем конуса
190 / 191
Примечание. Это урок с решениями задач по геометрии (раздел стереометрия, конус). Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме.

Задача.
В цилиндр вписаны шар и конус, причём высота цилиндра равна диаметру его основания.
Найти отношение объёма конуса к объёму шара, и к объёму цилиндра.

Решение.
Для решения задачи воспользуемся формулами нахождения объема шара, цилиндра и конуса:
Формула нахождения объема

Учтем, что по условию задачи высота цилиндра, а, соответственно и конуса, равны диаметру шара, что следует из построения согласно условию. То есть шар касается обеих оснований цилиндра в их центре. Из чего запишем:
h = 2R
Откуда
Vцилиндра = πR2h =  πR22R = 2πR3
Vшара = 4/3πR3
Vконуса = 1/3πR2h = 1/3πR22R = 2/3πR3

Таким образом, соотношение объема конуса к объему шара будет равно:
Vконуса / Vшара =  2/3πR3 / 4/3πR3 = 2/3 / 4/3 = 1/2

А соотношение объема конуса к объему цилиндра будет равно:
Vконуса / Vшара = 2/3πR3 / 2πR3 = 2/3 / 2 = 1/3

Ответ: 1/2 и 1/3

Задача.
Объем конуса равен 27. На высоте конуса лежит точка и делит её в отношении 2:1 считая от вершины. Через точку проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.

Решение.
Обратим внимание, что треугольники AOB и COD - подобны. Из условия задачи определим коэффициент подобия как 2:3.
Конус
Объем конуса находится по формуле, указанной в предыдущей задаче.
Vконуса = 1/3πR2h = 27 (по условию)
Тогда объем малого конуса будет равен
Vмал.конуса = 1/3π(2/3R)2(2/3h)
то есть
Vмал.конуса = 1/3π 4/9 R2 2/3 h
Vмал.конуса = 8/27 *1/3π R2 h
а так как мы знаем, что 1/3π R2 h= 27 (см. выше), то

Vмал.конуса = 8/27 * 27 = 8

Ответ: объем малого конуса равен 8
0  


 Площадь боковой поверхности конуса | Описание курса | Объем конуса (2)