|
Примечание. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме. В задачах вместо символа "квадратный корень" применяется функция sqrt(), в которой sqrt - символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак "√".
Задача.
Боковая грань правильной треугольной пирамиды представляет собой правильный треугольник, площадь которого 16 корней из 3 см2 (16√3). Вычислить периметр основания пирамиды.
Решение.
Правильный треугольник - это равносторонний треугольник. Соответственно, боковая грань пирамиды представляет собой равносторонний треугольник.
Площадь равностороннего треугольника равна:
Соответственно:
16√3 = a2 √3 / 4
16 = a2 / 4
a2 = 64
a = 8 см
Основанием правильной треугольной пирамиды является правильный (равносторонний) треугольник. Таким образом, периметр основания пирамиды равен
8 * 3 = 24 см
Ответ: 24 см.
Правильная треугольная пирамида (правильная пирамида с треугольником в основании). Тетраэдр |
Описание курса
| Объем правильной треугольной пирамиды
|