Высота треугольника
24 / 178


ВЫСОТА ТРЕУГОЛЬНИКА

Высота треугольника – опущенный из вершины треугольника перпендикуляр, проведенный на противолежащую вершине сторону или на ее продолжение.

Все три высоты треугольника (проведенные из трех вершин) пересекаются в одной точке, которая называется ортоцентром. Для того, чтобы найти точку пересечения высот, достаточно провести две высоты (две прямые пересекаются только в одной точке).

Расположение ортоцентра (точка О) определяется видом треугольника.

У остроугольного треугольника точка пересечения высот находится в плоскости треугольника. (Рис.1).

У прямоугольного треугольника точка пересечения высот совпадает с вершиной прямого угла (Рис.2).

У тупоугольного треугольника точка пересечения высот находится за плоскостью треугольника (Рис.3).

У равнобедренного треугольника медиана, биссектриса и высота, проведенные к основанию треугольника, совпадают.

У равностороннего треугольника все три «замечательные» линии (высота, биссектриса и медиана) совпадают и три «замечательных» точки (точки ортоцентра, центра тяжести и центра вписанной и описанной окружностей) находятся в одной точке пересечения «замечательных» линий, т.е. тоже совпадают.

ВИСОТА ТРИКУТНИКА

Висота трикутника - опущений з вершини трикутника перпендикуляр, проведений на протилежну вершині бік або на її продовження.

Всі три висоти трикутника (проведені з трьох вершин) перетинаються в одній точці, яка називається ортоцентром. Для того, щоб знайти точку перетину висот, досить провести дві висоти (дві прямі перетинаються тільки в одній точці).

Розміщення ортоцентра (точка О) визначається видом трикутника.

У гострокутного трикутника точка перетину висот знаходиться в площині трикутника. (Мал.1).

У прямокутного трикутника точка перетину висот збігається з вершиною прямого кута (Мал.2).

У тупоугольного трикутника точка перетину висот знаходиться за площиною трикутника (Мал.3).

У рівнобедреного трикутника медіана, бісектриса і висота, проведені до основи трикутника, збігаються.

У рівностороннього трикутника всі три «помітні» лінії (висота, бісектриса і медіана) збігаються і три «помітні» точки (точки ортоцентра, центру ваги і центру вписаного і описаного кіл) знаходяться в одній точці перетину «помітних» ліній, тобто теж збігаються.


Высота, проведенная к сторонам разных типов треугольников

Задача на подобие треугольников.

В прямоугольном треугольнике ABC (угол C = 900) проведена высота CD. Определите CD, если AD = 9 см, BD = 16 см

Решение.

Треугольники ABC, ACD и CBD подобны между собой . Это непосредственно следует из второго признака подобия (равенство углов в этих треугольниках очевидно).

Прямоугольные треугольники - единственный вид треугольников, которые можно разрезать на два треугольника, подобных между собой и исходному треугольнику.

Обозначения этих трех треугольников в таком порядке следования вершин: ABC, ACD, CBD. Тем самым мы одновременно показываем и соответствие вершин. (Вершине A треугольника ABC соответствует также вершина A треугольника ACD и вершина C треугольника CBD и т. д.)

Треугольники ABC и CBD подобны. Значит:

AD/DC = DC/BD, то есть

DC2=AD*BD

DC2=9*16

DC=12 см

Задача на применение теоремы Пифагора.

Треугольник ABC является прямоугольным. При этом C-прямой угол. Из него проведена высота CD=6см.  Разность отрезков BD-AD=5 см.

Найти: Стороны треугольника ABC.

Решение.

1.Составим систему уравнений согласно теореме Пифагора

CD2+BD2=BC2

CD2+AD2=AC2

поскольку CD=6

36+BD2=BC2

36+AD2=AC2

Поскольку BD-AD=5, то

BD = AD+5, тогда система уравнений принимает вид

36+(AD+5)2=BC2

36+AD2=AC2

Сложим первое и второе уравнение. Поскольку левая часть прибавляется к левой, а правая часть к правой - равенство не будет нарушено. Получим:

36+36+(AD+5)2+AD2=AC2+BC2

72+(AD+5)2+AD2=AC2+BC2

2. Теперь, взглянув на первоначальный чертеж треугольника, по той же самой теореме Пифагора, должно выполняться равенство:

AC2+BC2=AB2

Поскольку AB=BD+AD, уравнение примет вид:

AC2+BC2=(AD+BD)2

Поскольку BD-AD=5, то BD = AD+5, тогда

AC2+BC2=(AD+AD+5)2

3. Теперь взглянем на результаты, полученные нами при решении в первой и второй части решения. А именно:

72+(AD+5)2+AD2=AC2+BC2

AC2+BC2=(AD+AD+5)2

Они имеют общую часть AC2+BC2 . Таким образом, приравняем их друг к другу.

72+(AD+5)2+AD2=(AD+AD+5)2

72+AD2+10AD+25+AD2=4AD2+20AD+25

-2AD2-10AD+72=0

В полученном квадратном уравнении дискриминант равен D=676, соответственно, корни уравнения равны:

х1=-3,5

x2=4 

Поскольку длина отрезка не может быть отрицательной, отбрасываем первый корень.

AD=4

Соответственно

BD = AD + 5 = 9

AB = BD + AD = 4 + 9 = 13

По теореме Пифагора находим остальные стороны треугольника:

AC = корень из (52)

BC = корень из (117).

0  


 Треугольник (Трикутник) | Описание курса | Сумма углов треугольника 
   

Обсудить на форуме
Записаться на курсы
Обратиться к консультанту
Пройти тест
Полный список курсов обучения
Бесплатные видеоуроки
Нужна информация!




Нажмите, чтобы рекомендовать эту страницу другим:
Рейтинг@Mail.ru Яндекс.Метрика